Ugrás a tartalomhoz Lépj a menübe
 


Mi a napelem ?

 

 

A legfontosabb talán az, hogy a napelemeket alapvetően elektromos áram előállítására használjuk.

 

 

A napelem vagy fotovillamos elem olyan szilárdtest eszköz, amely az elektromágneses sugárzást (fotonbefogást) közvetlenül villamos energiává alakítja. Az energiaátalakítás alapja, hogy a sugárzás elnyelődésekor mozgásképes töltött részecskéket generál, amiket az eszközben az elektrokémiai potenciálok, illetve az elektron kilépési munkák különbözőségéből adódó beépített elektromos tér rendezett mozgásra kényszerít, vagyis elektromos áram jön létre. Ez a jelenség ívkisüléses lámpák esetén is lezajlik, nem szükséges kizárólagosan napfény.

A napelemekre általában 20-25 év a garancia, jellemzően 20-40 év az élettartamuk. A napenergia hasznosításában hosszabb távon számottevő növekedés várható.

A ma létező nagy teljesítményű naperőművek jellemzően nem ezt a technológiát alkalmazzák; a naphőerőművek a Nap hőjét forró gőznek vagy folyadéknak adják át, ezzel turbinák segítségével nyernek áramot.
Nappanelek a Réunion szigetcsoporthoz tartozó Mafate szigeten (Marla)

Összehasonlítás:
Azt az energiát, amely az összes Földön található és kitermelhető kőolajkészletekben rejlik a Nap 1,5 nap alatt sugározza a Földre. Az emberiség jelenlegi, évi energiafogyasztását a Nap egy órányi energiakibocsátása teljes egészében fedezné.

Ugyanakkor a napelemek elterjedését nagymértékben hátráltató tényező az áruk, aminek két fő oka az előállításuk energia- és csúcstechnológia-igényessége, a kis széria, továbbá, hogy csak napsütésben képesek hatékonyan működni. Az utóbbi években azonban (főként a kínai napelemgyártás felfutása, és a tömegtermelés megjelenése miatt) folyamatosan csökken a napelemek ára. Korábbi szakmai előrejelzések 2010 utánra várták, hogy a napelemmel termelt áram ára megegyezzen a fosszilis energiatermelés költségével, de ez eddig még nem következett be.

Másrészt a Föld jelenlegi legnagyobb – nem fotovillamos – naperőműve 40 MW-os, ami kevesebb mint tizede a Paksi atomerőmű egyetlen reaktorblokkja teljesítményének, és ezt a teljesítményt is csak ideális időben produkálja.

Alapanyag szerint többféle napelemet különböztetünk meg:

 


 

  • - Egykristályos szilícium (Si) napelemek: drágák, de hatékonyak. A legkorszerűbb panelek hatásfoka 18%, laboratóriumi körülmények között 25% (az elméleti határ 31%)
  • - Polikristályos Si napelemek
  • - Amorf szilícium napelemek: olcsóbbak
  • - Fém–félvezető–fémszerkezetek: festékanyagokkal érzékenyített félvezető-oxidok. A hatásfokuk kevesebb, mint 10%. Példa: kadmium-tellurid és a réz-indium-tellurid napelemek
  • - Adalékolt amorf félvezető napelemek
  • - Szerves anyagokból (polimerekből) készült napelemek: olcsók, de hatásfokuk csak 2-5%


A napsugárzás koncentrálásával (többfotonos technológia; vagyis apró lencsék alkalmazása) a hatásfok elméletileg 66%-ra növelhető.[3]

Kinyerhető teljesítmény:
A napelemekből kinyerhető teljesítmény függ a fény beesési szögétől, a megvilágítás intenzitásától, és a napelemre csatolt terheléstől. A fény intenzitását kevéssé tudjuk befolyásolni, míg a másik két paraméter elméletileg kézben tartható.

A napelem beépítése szerint lehet fix vagy napkövető jellegű.

A fixen beépített napelem megfelelő tájolás esetén (déli irány, Magyarországon 35 fokos dőlésszög) reggeltől estig tud áramot termelni tiszta idő esetén. Természetesen reggel és este már csak kisebb teljesítményre képes a napelem, mivel fix rögzítés esetén a napsugárzás kis beesési szögben kisebb áramerősséget tud megtermelni. Ahhoz, hogy egész nap az időjárás által megengedett maximális teljesítménnyel tudjuk gyűjteni a napenergiát, a nappal folyamán vízszintesen forgatnunk, függőlegesen bólintanunk kell a napelemet úgy, hogy a napsugár beesési szöge a lehető legkisebb mértékben térjen el a merőlegestől. Ehhez plusz elektronikát és mechanikus elemeket kell felhasználnunk, és a telepítési hely megválasztására is nagyobb gondot kell fordítani, továbbá karbantartási költségekre is számítani kell. Ellenben a fix beépítésnél elegendő a (tervezéskor már jól betájolt) ház tetőszerkezetét felhasználnunk a napelemek tartójának.

Az optimális besugárzásra beforgatott napelem-modul sem fog mindig teljesítményt szolgáltatni, mivel a besugárzás mértéke több okból is változhat, lecsökkenhet (például lemegy a Nap vagy eltakarják a felhők stb.). Mivel az elektromos fogyasztókat folyamatosan szeretnénk üzemeltetni, viszont a napelem nem tud folyamatosan energiát biztosítani, valamilyen energiatároló puffert kell alkalmaznunk a rendszerben, amivel áthidalhatjuk az alacsonyabb napfény-intenzitású időszakokat. (puffer=átmeneti energiatároló). Az energia hasznosításának másik útja, amikor invertert alkalmazunk. Az inverter a napelem egyenáramát váltakozó árammá alakítja át, és visszatáplálja a hálózatba. A visszatáplálás természetesen csak a hálózat periódusával szinkronizálva lehetséges és az elektromos művek engedélye is szükséges hozzá.

A teljesítmény növelésének egyik módja sok apró lencse alkalmazása, amelyek a napfényt, a beesési szögtől függetlenül, a napelemekre fókuszálják. A lencsés használat további előnye, hogy magát a fotovillamos panelt az optikai fókuszálás miatt sokkal kisebbre lehet venni, így földi körülmények között is lehetőség nyílik kiváló hatásfokú, de egyébként drága, az űrtechnológiában alkalmazott fotovillamos egységek gazdaságos használatára.


Hatásfok:
A napelemek alapanyaguktól és technológiájuktól függően különböző hatásfokkal képesek villamos energiát termelni. A hatásfok (\eta , "eta") százalékosan fejezi ki, hogy a napelem mennyi napenergiát alakít át elektromos energiává. A hatásfokot a következő képlet szerint számítják:

          \eta = \frac{P_{m}}{E \times A_c},

ahol
    Pm a fényelem által leadott maximális teljesítmény,
    E a napsugárzás felületi teljesítménysűrűsége (W/m²),
    Ac a napelem felülete (m²)

A hatásfokot a környezeti és a konstrukcióval összefüggő tényezők egyaránt befolyásolják. A környezeti tényezők közül a hőmérséklet a legfontosabb, de ide lehet sorolni a cella felületének tisztaságát, a megvilágítás erősségét is.

A szilícium-fotoelem feszültsége félvezető zárórétegben a töltéshordozók felszabadulása és szétválasztása révén keletkezik. A keletkező forrásfeszültség a megvilágítás erősségével nő. A forrásfeszültség nagy megvilágításkor sem nagyobb 0,6 V-nál. A rövidzárási áram a fényerősséggel arányos. A szilícium fotoelemek hatásfoka 10%. Max sugárzásnál kb. 10 mW/cm2

A napelemek hatásfoka jelenleg (2007 nyara) 6-14% közötti, a legkorszerűbb – polikristályos – napelemek 20%-os hatásfoka már csúcsnak számít. Az áttörést itt is a nanotechnológiától remélik.

Az Egyesült Államokbeli Delaware Egyetem (UD) kutatóinak sikerült feltornászniuk a szilícium napcellák hatékonyságát 42,8%-ra hagyományos földi napfényben. Az új rekord rendkívül fontos mérföldkő a DARPA (Fejlett Védelmi Projektek Ügynöksége) által kitűzött 50%-os hatékonyság felé vezető úton. A hadsereg fejlesztő cége VHESC (Very High Efficiency Solar Cell, nagyon nagy hatékonyságú napcella) programjával technikailag és pénzügyileg is megvalósítható hordozható napcellás akkutöltőket szeretne kifejleszteni.

Alkalmazási példák:
A napelemek alkalmazását meghatározó legfőbb szempont, hogy bár bevezetésük magas egyszeri kiadást igényel, viszont üzemeltetési költségük igen alacsony.

Fotovoltaikus erőművek:
A Serpa fotovillamos naperőmű Portugáliában 2007-ben kezdett működni. A SunEdison 2010-ben bejelentette, hogy még abban az évben felépít egy fotovoltaikus erőművet Északnyugat-Olaszországban, Rovigo mellett.

Egyéb alkalmazások:
A napelemek alkalmazása megjelent az ún. intelligens ruházatok egyes típusain is, ahol célja a ruházatba beépített elektromos működtetésű készülékek (a szervezet működését figyelő érzékelők, GPS, iPod stb.) áramellátása.

 

www.napkollektor.eoldal.hu.jpg

 

 

Forrás: http://hu.wikipedia.org/wiki/Napelem

 

 

napelem1-400x759.jpg

 

__________________________________

 

 Amennyiben érdekli, hogy mi történik a nagyvilágban napelem és napkollektor tekintetében ITT megnézheti:

 

www.napkollektor-napelem.eoldal.hu.jpg